***

ГлавнаяСтатьи о озонокосметике. Стр.1Стр. 2 ⇒ Влияние озона на организм человека и механизмы его лечебного действия

Влияние озона на организм человека и механизмы его лечебного действия

Исследования свойств озона, проведенные в 19 веке показали, что озон способен реагировать с большинством органических и неорганических веществ до их полного окисления, т.е. до образования воды, оксидов углерода и высших оксидов других элементов. В отношении биологических объектов установлено селективное действие озона на соединения, содержащие двойные связи. К ним относятся белки, аминокислоты и ненасыщенные жирные кислоты, входящие в состав липопротеидных комплексов плазмы и липидного бислоя клеточных мембран. Этими соединениями лежат в основе биологических эффектов озонотерапии и имеют патогенетическое значение при различных заболеваниях.

При наружном применении высоких концентраций газообразного озона и озонированных растворов проявляются его мощные окислительные свойства, направленные против микроорганизмов. Причем озон более эффективен во влажной среде, так как при разложении озона в воде образуется высокореакционный гидроксильный радикал. Озон убивает все виды бактерий, вирусов, грибов и простейших. При этом в отличие от многих антисептиков озон не оказывает разрушающего и раздражающего действия на ткани, так как клетки многоклеточного организма имеют мощную антиоксидантную систему защиты.

Ниже приводятся виды микроорганизмов, для которых озон оказал губительное действие (Carpendale M.T., Griffis J., 1993)

  • Bacteria
  • Gram – Negative Cocci Gram – Negative Rods (Continued)
  • Gonococcus Proteus Mirabilis
  • Meningococcus Proteus Vulgaris
  • Other Neisseriae Pseudomonas Aeruginosa
  • Salmonella Paratyphi
  • Gram Positive Cocci Hirshfeldi
  • Typhi
  • Pneumococcus Shigella Flexneri
  • Staphylococcus Coag + ve Vibrio Cholera
  • Streptococcus Viridans
  • Streptococcus Hemolyticus Gram Positive Rods
  • Streptococcus Faecalis
  • Actinomyces
  • Gram – Negative Rods Baccillus Anthrax
  • Clostridium Tetanum
  • Aerobacter (Enterobacter) Corynebacterium Diphtheriae
  • Brucella
  • Escherichia Acid Fast Roads
  • E. Coli Sepsis
  • Haemophilus Influenzae Actinomyces
  • Haemophilus Pertussis Mycobacterium Tuberculosis
  • Klebsiella
  • Pasteurella Tularemia
  • Viruses Protozoa
  • Encephalitis Entamoeba Histolytica
  • Hepatitis A Trichomonas Vaginalis
  • Hepatitis B
  • Influenza
  • Measles Taenia Saginaya
  • Mumps
  • Meningitis Coxsackie
  • Poliomyelitis Brunhilda
  • Poliomyelitis Lansing
  • Vaccinia

В исследованиях проведено испытание бактерицидных свойств озонированной дистиллированной воды с концентрацией озона 4 мг/л. В условиях in vitro показано полное подавление роста колоний стафилококка, кишечной и синегнойной палочек, протеев, клебсиеллы при 103 – 104 КОЕ/мл. При более высоком количестве микроорганизмов (около 105 – 107 КОЕ/мл.) имела место неполная инактивация микроорганизмов.

Среди причин бактерицидного эффекта озона чаще всего упоминают нарушение целостности оболочек бактериальных клеток, вызываемое окислением фосфолипидов и липопротеидов.

Грамположительные бактерии более чувствительны к озону, чем грамотрицательные, что, видимо, связано с различием в строении их оболочек. Есть также данные о взаимодействии озона с протеинами. Обнаружено проникновение озона внутрь микробной клетки, вступление его в реакцию с веществами цитоплазмы и превращение замкнутого плазмида ДНК в открытую ДНК, что снижает пролиферацию бактерий.

Эффект озонированного растительного масла обусловлен наличием озонидов. Полагают, что за счет кислородной связи озонид ненасыщенной жирной кислоты соединяется с рецептором для микроорганизмов и блокирует его. Наибольшим бактерицидным действием обладает масло с пероксидным числом 2,5-3 тыс., что показано на культуре T.rubrum, T.interdigitale, M.canis, плесневые и дрожжеподобные грибы рода Candida. Терапевтическая эффективность представлена при микозе стоп, онихомикозе, кандидозе кожных складок, паховой эпидермофитии.

Вирицидное действие озона связывают, прежде всего, с повреждением полипептидных цепей оболочки вируса, и отсюда, с нарушением их способности прикрепляться к клеткам-мишеням. Одним из механизмов является расщепление нити РНК вируса на две части, что повреждает реакции размножения.

Капсулированные вирусы более чувствительны к действию озона, чем некапсулированные, поскольку капсула содержит много липидов, которые легко взаимодействуют с озоном.

Важнейшим открытием явилось обнаружение антивирусного эффекта озона на культуре лимфоцитов, зараженной ВИЧ-1 (Freberg, Carpendale, 1988).

Механизм инактивации ВИЧ авторы объясняют следующими моментами:

  1. частичным разрушением оболочки вируса и потерей им своих свойств;
  2. инактивацией фермента обратной транскриптазы, ответственной за процесс транскрипции и трансляции вирусных белков и, соответственно, размножение вируса;
  3. нарушением способности вирусов соединяться с рецепторами клеток-мишеней. По данным Viebahn, электрофильная молекула озона может реагировать с парой свободных электронов азота в N-ацетилглюкозамине, который обнаруживается в вирусных акцепторах клетки-хозяина; это снижает чувствительность клеток к вирусам и устраняет феномен зависимости. Причем выяснено, что озон может инактивировать вирус как экстракорпорально, так и внутри клеток.
  4. важную роль играет активация синтеза биологически активного пептида интерферона, защищающего незараженные клетки от проникновения вируса.
  5. многие инфекции, сопровождающие HIV, являются устойчивыми к антибиотикам, но способными инактивироваться в концентрациях, не токсичных для клеток организма.

Точками воздействия в организме теплокровных являются:

  • ненасыщенные жирные кислоты;
  • свободные аминокислоты;
  • аминокислоты в пептидных связях;
  • никотинамид, коэнзимы

Если для включения молекулы кислорода в аэробные процессы необходимо наличие активных ферментов или металлов переменной валентности, то озон способен мгновенно реагировать с рядом биоорганических субстратов.

Важнейшими являются селективные свойства озона реагировать с соединениями, имеющими двойные связи, и прежде всего с полиненасыщенными кислотами (ПНЖК). Основными продуктами, образующимися при взаимодействии озона с ненасыщенными жирными кислотами наряду с озонидами, являются гидропероксиды. Образующиеся в реакциях озонолиза пероксиды отличаются от аутогенных своей короткоцепочечностью и гидрофильностью. Аутогенные пероксиды являются короткоцепочечными пероксидами липофильного характера. Небольшое количество пероксидов озона усиливает потребление кислорода кровью во много раз. Стабильность этих пероксидов незначительна, в течение короткого времени они распадаются и не поддаются аналитическому обнаружению.

Повышенное потребление кислорода организмом было доказано с помощью специальных измерений газов крови. Особенно доказательным было увеличение артерио-венозной разницы по кислороду.

В наших экспериментах в условиях in vitro с плазмой крови человека оценено влияние озонированного физиологического раствора, обработанного газовой смесью с концентрацией 800 мкг/л.

С помощью анализатора, разработанного в Институте химической физики АН РФ, измерялось количество двойных связей. В исходном состоянии содержание двойных связей составляло 2,4х10-2 моль/л. Через 5 минут взаимодействия с озонированным раствором величина снизилась до 2,2, а через 40 минут упала в 2 раза.

Увеличение в 2-3 раза объема озонированного раствора вызывало уменьшение количества двойных связей в 2 раза уже через 5 минут. Изменению числа двойных связей соответствовало снижение в плазме крови в 2-3 раза процентного содержания ненасыщенных жирных кислот С 20:4; С 20:3; С 18:3; С 18:2 при значительном увеличении моноеновой кислоты 16:1 и насыщенных – 14:0; 15:0; 16:0.

Влияние озонированного раствора 0,9% NaCI на индекс ненасыщенности можно объяснить реакциями по месту расположения двойных связей в жирных кислотах, что приводит к их разрыву и укорочению или к образованию соответствующих продуктов в сторону увеличения количества короткоцепочечных жирных кислот. Проведенные исследования по изучению спектра белков в плазме крови у экспериментальных животных не выявили изменений в соотношении фракций. Это свидетельствует о том, что терапевтические концентрации озона не повреждают белковые структуры.

В то же время у больных с воспалительными заболеваниями лица и шеи после курса озонотерапии отмечена нормализация белоксинтезирующей функции печени, то есть увеличение количества альбумина и снижение уровней белков острой фазы (Дурново Е.А., 2003).

Так как при озонотерапии в организм попадают активные формы кислорода, то очень важным является рассмотрение влияния озона на процесс перекисного окисления липидов (ПОЛ).

В многочисленных исследованиях показано, что терапевтические дозы озона стимулируют антиоксидантную систему и уменьшают интенсивность ПОЛ. В процессе озонотерапии происходит нарастание промежуточного продукта ПОЛ – малонового диальдегида в среднем на 119,4%. Достоверных изменений количества первичных продуктов ПОЛ – диеновых конъюгатов (ДК) – получить не удалось, так как у разных больных их значения менялись разнонаправлено.

Опираясь на эти факты, можно сказать, что начальная активация свободнорадикального окисления под влиянием озонотерапии, естественно, происходит, так как при внутривенных капельных инфузиях озонированного изотонического раствора хлорида натрия в организм вводятся озон, кислород и свободные радикалы.

При этом быстро запускается антиоксидантная система защиты, которую озон, видимо, опосредованно стимулирует. Это предложение сделано на основании того, что конечные продукты липопероксидации – основания Шиффа (ОШ) – достоверно снижаются после озонотерапии на 59,7% (р<0,05), а также увеличивается коэффициент ДК/ОШ в 77,8% случаев. Следовательно, антиоксидантная система в данном случае работает на стадии разветвления цепи ПОЛ, которая характеризуется образованием малонового диальдегида, то есть цепная реакция обрывается, а малоновый диальлегид инактивируется О быстрой компенсации реакций свободнорадикального окисления также свидетельствуют и результаты индуцированной биохемилюминесценции (БХЛ) плазмы пациентов, изучение которой является наиболее адекватным методом для оценки свободнорадикальных процессов в биосубстратах. Снижение I max и светосуммы происходило уже после 4-5 процедур озонотерапии, после 8-10 процедур достоверно уменьшилась на 31,1% (р<0,05), I max – на 17,9% (p<0,05). Это свидетельствовало о снижении потенциала ПОЛ и активации антиоксидантной системы защиты. Общая антиоксидантная активность (АОА) плазмы, по данным БХЛ (I max/S), также неуклонно увеличивалась, и к концу курса лечения истощения антиоксидантной системы не происходило. Напротив, возрастала активность антиоксидантных ферментов: супероксиддисмутазы на 45,4% и каталазы на 34,9% (р<0,05).

Результаты проведенных нами исследований по оценке состояния про- и антиоксидантных систем в экспериментальных и клинических условиях позволило заявить, что пусковым моментом в действии озона на организм является регуляция про- и антиоксидантного баланса. Интенсификация свободнорадикальных реакций влечет за собой подъем общей антиоксидантной активности сыворотки крови и активности антиоксидантных ферментов СОД, каталазы, глутатион пероксидазы в клетках крови и в тканях. В результате увеличения общей антиоксидантной системы защиты нормализуются процессы ПОЛ, что сопровождается постепенной нормализацией в сыворотке крови и во всех тканях уровней молекулярных продуктов липопероксидации, и что особенно важно, токсичных, повреждающих клеточные мембраны – МДА и ОШ. В результате восстанавливается активность встроенных в эти мембраны ферментов (Диплом №309 на открытие от 18.05.06 г. Закономерность формирования адаптационных механизмов организмов млекопитающих при системном воздействии низкими терапевтическими дозами озона Конторщикова К.Н., Перетягин С.П.)

Отсюда, регуляцию процессов ПОЛ и АОА в организме можно считать одним из механизмов лечебного действия озонотерапии.

Есть данные о том, что при парентеральном введении озон способен стимулировать работу гепатоцитов, в том числе направленную на переработку липидных фракций. Жировой дистрофии печени при этом не возникает, так как под влиянием озона в гепотоцитах активируются структурно-функциональные механизмы преобразования жировых энергетических субстратов в углеводные (Лебкова Н.П., 1992) Проведенные опыты на крысах показали, что озонирование вызывает гиперплазию пероксисом, которые принимают активное участие в катаболизме жирных кислот и синтезе гликогена и глюкозы из продуктов этого катаболизма. Кроме того, пероксисомы продуцируют каталазу и в связи с этим выполняют антиоксидантную и детоксикационную функции.

Наиболее простой моделью для изучения биохимических процессов являются эритроциты. Кроме того, этот объект имеет немаловажное значение в связи с тем, что в медицинской практике достаточно широко используются методики парентерального введения озона, при котором происходит непосредственный контакт с эритроцитами. Особого внимания заслуживает сосудорасширяющий эффект озонотерапии, связанный с активацией эндотелиального фермента NO-синтазы и синтезом окиси азота, одного из самых мощных вазодиляторов. Friman (1988) обнаружил защитный эффект озона на эндотелий сосудов.

В настоящее время активно изучается влияние озона на белые клетки крови и иммунную систему. В наших исследованиях при озонотерапии беременных женщин с поздним гестозом выявлена коррекция всех нарушений стадий фагоцитоза. Прежде всего имеет место сокращение времени адгезии и особенно выражена активация стадии кислородного взрыва, обусловленная образованием пероксидов. Третья стадия фагоцитоза, определяющая суммарный ответ фагоцитирующей системы, у больных до лечения озоном отсутствовала, после лечения эта стадия регистрировалась на уровне нормы. Одним из возможных вариантов активации фагоцитоза является повышение синтеза фагоцитстимулирующего фактора.

Выяснено также, что озон стимулирует выработку цитокинов лимфоцитами и моноцитами (Bocci V., 1991). К цитокинам относятся интерфероны, фактор некроза опухоли и интерлейкины, с чем связаны иммуномодулирующие свойства озона.

Экспериментальные данные позволяют сделать вывод об эффективном вмешательстве озона в свободнорадикальные и энергетические процессы опухолевой клетки, вызывающем изменения в анаболических процессах и в конечном итоге ее гибель, что подтверждается морфологическими исследованиями (Щербатюк Т.Г., 1997). Важнейшая роль озона в противоопухолевом действии связана с нормализацией иммунного надзора, в частности, FAS-апоптозом. Установлено, что при введении в организм человека низких терапевтических доз озона происходит снижение изначально повышенного уровня сывороточного растворимого Fas антигента и относительного содержания Fas мононуклеарных клеток, что свидетельствует об ограничении Fas- зависимой инициации апоптоза иммунокомпетентных клеток и повышении эффективности противоопухолевой терапии. Диплом N 330 на открытие от 19 марта 2007г. «Закономерность изменения сывороточного уровня растворимого Fas антигена и количества Fas+ мононуклеарных клеток периферической крови организма человека под действием низких терапевтических доз озона (Алясова А.В., Конторщикова К.Н., Новиков В.В., Барышников А.Ю., Караулов А.В.)

Известным и важным эффектом озона является влияние на гемостаз.

При исследовании влияния озона и на тромбоциты по показателям индекса агрегации тромбоцитов (ИАТ) с АДФ, ристомицином и адреналином получены однонаправленные результаты – снижение агрегационной способности кровяных пластинок, хотя статистически значимым снижение ИАТ на 6% оказалось только при проведении теста с АДФ. Данная динамика наблюдалась у 60% пролеченных пациетнов неврологического профиля. Важно отметить, что снижение ИАТ после курса внутривенных капельных инфузий озонированного изотонического раствора хлорида натрия происходило во всех случаях с исходно повышенной агрегационной способностью тромбоцитов.

На стадии первичного (сосудисто-тромбоцитарного) гемостаза снижение агрегационной способности тромбоцитов может достигаться следующим путем. В их мембране содержится арахидоновая кислота, которая, с одной стороны, является источником образования мощного активатора агрегации тромбоцитов – тромбоксана, а с другой – мощного ингибитора тромбоксана – простациклина в сосудистой стенке. Озон способен активировать тромбоцитарный фермент фосфолипазу А2, которая, расщепляя фосфолипидные мембраны, приводят к высвобождению жирных кислот, главным образом арахидоновой. Эта кислота является субстратом целого ряда ферментов, один из которых – циклооксигенеза, которая превращает арахидоновую кислоту в эндопероксид. Дальнейшее превращение эндопероксида зависит от его локализации: в неповрежденной сосудистой стенке он превращается в простациклин и препятствует распространению тромбоцитарного агрегата, а в месте повреждения – в тромбоксан, обеспечивающий немедленное освобождение ряда высокоактивных агентов, которые инициируют процесс свертывания крови (Грицюк А.И., Амосова Е.Н., Грицюк И.А., 1994). В терапевтических концентрациях озон способен селективно реагировать по месту двойной связи в арахидоновой кислоте, запуская ее метаболизм по пути образования простациклина, предотвращая тем самым создание тромбоцитарных агрегатов.

Многие авторы указывают на то, что продукты ПОЛ (в частности, малоновый диальдегид) могут ингибировать агрегацию тромбоцитов (Азизова О.А., Власова И.И., 1993; Муранов К.О., 1990).

А при внутривенном введении озонированный физиологический раствор неизбежно стимулирует процесс ПОЛ, особенно в начале курса лечения. Л.В. Шатилина (1993) выдвигает гипотезу о свободнорадикальной регуляции агрегационной активности тромбоцитов, а также приводит данные о том, что диеновые конъюгаты могут непосредственно активировать тромбоциты, приводя к их повышенной агрегации.

По-видимому, озон влияет и на другие звенья многоступенчатого процесса свертывания крови. После курса озонотерапии достоверно увеличиваются показатели первой фазы плазменного гемостаза – активированное время рекальцификации на 7% (р<0,05) и активированное частичное тромбопластиновое время на 7,8% (р<0,05), не превышая нормальных значений.

Вышеуказанные сдвиги, происходящие под действием озонорерапии, могут свидетельствовать о снижении функциональной активности XII, XI, IX и VIII плазменных факторов свертывания крови, а также могут быть связаны с уменьшением количества тромбоцитов и их агрегационной активности.

Исследование второй фазы плазменного гемостаза (образование тромбина) проводилось с помощью довольно грубого метода – определения протромбированного индекса. Оказалось, что после лечения он практически не меняется, то есть значительных сдвигов крови при свертывания при применении озоно-кислородной смеси не происходит.

Из показателей, характеризующих третью фазу свертывания крови (образования фибрина), этаноловый тест и активность XIII фактора плазмы (фибринстабилизирующего) практически не менялись, а концентрация растворимых комплексов фибрин-мономера, повышенная до лечения, достоверно снижалась и в основной, и в контрольной группах больных.

Растворимые комплексы фибрин-мономера – это высокомолекулярные производные фибриногена, которые не трансформируются в фибрин при добавлении тромбина. Их повышение свидетельствует о склонности к внутрисосудистому тромбозу, а уменьшение их количества после озонотерапии является благоприятным для больных с сосудистыми заболеваниями нервной системы.

Средние уровни фибриногена в плазме крови пациентов в процессе лечения колебались незначительно.

При исследовании первичных естественных антикоагулянтов оказалось, что после проведения курса озонотерапии увеличивается активность комплекса антитромбин III-гепарин с 93,9 до 101,7% (р<0,05), который нейтрализует ферментативную активность тромбина, калликреина, активированные факторы свертывания крови – XIIa, XIa, Xa, IXa и является наиболее мощным ингибитором свертывания крови (В.П.Балуда, 1995). Под воздействием озонотерапии наблюдалась активация фибринолиза (фибринолитическая активность изменялась с 221,2 до 203,9 мин., снижаясь на 7,8%). Протаминсульфатный тест для обнаружения продуктов деградации фибрина при этом оставался отрицательным. Следовательно, вводимый внутривенно озонированный физиологический раствор повышает фибринолитическую активность крови пациентов, не приводя к гиперфибринолизу. Активация фибринолитического звена системы гемостаза препятствует росту тромбов, вызывая частичный или полный тромболизис, ведет к лизису фибрина, обеспечивает его удаление из сосудистого русла, является одним из ведущих механизмов реваскуляризации и восстановления кровотока в органах и тканях (В.П.Балуда и соавт., 1995).

Практически по всем показателям коагулограммы под воздействием озонотерапии получены однонаправленные сдвиги в сторону гипокоагуляции. Причем эти изменения были умеренными, не выходя в большинстве случаев за пределы нормальных значений.

Таким образом, озон воздействует на всех этапах сложной цепной ферментативной реакции, каковой является процесс свертывания крови, однонаправлено, умеренно сдвигая систему коагуляционного гомеостаза в сторону снижения свертывающей способности крови, предотвращая тем самым внутрисосудистое тромбообразование, особенно в участках с замедленным кровотоком. Уменьшая вязкость и свертываемость крови, озонированный физиологический раствор улучшает микроциркуляцию, которая охватывает множество взаимосвязанных и взаимообусловленных процессов, среди которых, в первую очередь, следует назвать следующие: циркуляция крови и лимфы в сосудах диаметром от 2 до 200 мкм, поведение клеток крови (деформация, агрегация, адгезия и др.), свертывание крови (коагуляция, фибринолизис, тромбообразование, роль тромбоцитов), транскапиллярный обмен и ультраструктурные особенности микрососудов (Чернух А.М., Александров П.Н., Алексеев О.В., 1975).

Перетягин С.П. и соавт. (1992) проводили озонирование крови пациентам после клинической смерти и обнаружили, что это привело к восстановлению ее кислородтранспортной функции. Это мнение подтвердили Акулов М.С. и соавт. (1992), исследуя эффект действия озона у постреанимационных больных. Они сообщали об улучшении оксигенации крови с восстановлением кислотно-щелочного равновесия, улучшении микроциркуляции и реологических свойств крови. При протезировании клапанов сердца в условиях искусственного кровообращения, где использовали озонированный перфузат у 150 пациентов, Бояринов Г.А. и соавт. (1995) отметили повышение утилизации тканями АТФ, при этом в эритроцитах нарастало содержание лактата и увеличивалась антиоксидантная активность крови.

Озон не оказывает разрушающего действия на ткани и клетки, он восстанавливает или увеличивает нормальное клеточное окисление, которое было снижено болезненным состоянием. Кровь в присутствии озона может поглощать в 2-10 раз больше кислорода, чем при обычных условиях, так как в этом случае кислород растворяется в плазме (Н.Н.Wolff, 1982). Опыты доказали тропизм озона и его фиксацию тканями. В процессе озонотерапии происходит насыщение кислородом как сыворотки крови, так и эритроцитов. При этом возможно поддержание обмена веществ через внеклеточную жидкость, несмотря на нарушенный тонус сосудов. При проведении большой аутогемотерапии с озоном у всех пролеченных пациентов показано статистически значимое повышение парциального давления кислорода в артериальной крови, снижение парциального давления углекислого газа и увеличение содержания гемоглобина.

F.Hernandez, S.Menendez, I.Alvarez (1995) сообщают о том, что ректальные инсуффляции озоно-кислородной смеси оказывают такое же влияние на метаболизм липидов, как и внутривенное введение озона. После курса лечения они отмечали снижение уровня холестерина в крови, увеличение количества глутатиона и глутатионпероксидазы. Вследствие вышеперечисленных эффектов озонотерапия находит все более широкое применение в медицинской практике. Озон воздействует одновременно на несколько звеньев патогенеза многих заболеваний.

Назад в список статей